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Abstract w B

We consider a class of singular Sturm-Liouville problems with a nonlinear convection and a
strongly coupling source. Qur investigation is motivated by, and then applied to, the study of
transonic gas flow through a nozzle. We are interested in such solution properties as the exact number
of solutions, the location and shape of boundary and interior layers. and nonlinear stability and
instability of solutions when regarded as stationary solutions of the corresponding convective
reaction-diffusion equations. Novel elements in our theory include a priori estimate for qualitative
behavior of general solutions, a new class of boundary layers for expansion waves, and a local
uniqueness analysis for transonic solutions with interior and boundary layers.

1. Introduction

Consider the nonlinear Sturm-Liouville problem
eu” = f(x.u) — c(x)h(u)

with u prescribed at x = 0 and x = 1. We study properties of the solutions: their
number, their asymptotic shape for small e, and their stability and instability,
“when viewed as stationary solutions of the corresponding time evolution equa-
tion. Our study is motivated by, and then applied to, the problem of transonic
gas flow through a nozzle. Novel elements in our theory include a new class of
boundary layers corresponding to expansion waves, a priori estimate for qualita-
tive behavior of general solutions, and a local uniqueness analysis for transonic

solutions with interior and boundary layers.
For simplicity of presentation, we shall carry out our analysis for the model

problem '
1.1) eu” = f(u) — c(x)h(u), u=u(x) €R, 0<sxxsl,
(1.2) u(0) = u,, u(l) = u,.
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32 S.-B. HSU AND T.-P. LIU
The flux function f(u) is assumed to be convex. This is motivated by gas

dynamics. where the sound speed depends monotonically on the density. By
composition with a simple translation, we may assume that

f’(u) >0 forall u under consideration,
(1.3)

1(0) = f(0) = 0.
The function h(u) represents the coupling of the source due to the geometry and
the gas flow. The;following strong nonlinear coupling assumption is dictated by
physics:- i

(1.4) ‘ h{u) = 0. h'(u)# 0 forall u under consideration.

The function ¢(x) represents the strength of the source and may change sign. For
simplicity and definiteness. we make the following assumption:

(1.5) (x)A(u) <0 for 0 <x <1 andall « underconsideration.

More general situations can also be treated with our analysis. There are two
distinet cases:

(1.6) c(x)h'(u) <0 {stable case: diverging duct).
(1.7 c(x)Yh{u) >0 (unstable case: converging duct).

Our equation (1.1) may be regarded as the stationary equation for the
convective reaction-diffusion equation

(1.8) u, + flu), =eu  + c(x)hu).

In the stable case, (1.1)-(1.2) has a unique solution which is time asymptoticallv
stable with respect to (1.8). In the unstable case. there may exist three solutions,
one of which has an interior layer and is nonlinearlv unstable with respect to
(1.8): the other two are stable.

We now relate our problem to nozzle flow. The quasi-one-dimensional model
for isentropic viscous compressible flow through a nozzle is

(1.9), (pA), + (prd) =0,
(1.9), (prA), + (pr°A) + Ap, = p(Ar)) .

where p . pop and A4 = A(x) are the density. velocity, pressure, viscosity
coeflicient of the gas and the cross section of the nozzle. The pressure is a given
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function of the density p. We assume that

(1.10) p(p) >0, p“(p)>0.

This is satisfied by the polytropic gases where p(p) = ap’, § = r > 1. The station-
ary equations are

(pUA)x = 0’

(pv’A)  + Ap, = p(Av,) .

The first equation can be integrated to yield a relation between v and p. This can
be used to eliminate one of the dependent variables and so yield a scalar equation
for one dependent variable. If p is eliminated, we get

(1.11) (g(v.x)) = po + e(x)k(v),
)A) { ’(A A Al 2
(1.12), gle.x) = pjl((;)( v+ (ﬁfq‘()x;’ - "A((.:))"
A A
{1.12), c(x) = (A(_\‘))JPOIOAO !‘( A(x) ) .
(1.12), k(o) = o,

where p, = p(0). ¢, = v(0) and A, = A(0). From (1.10) we have

¢ (1. x) = ot Ay _ PoteAy ,( Pyt Ao _ #4'(-\')
e A T (0 Pl Alv)”

2[‘)”1‘(,/1(, ,( Pn"l)An) 4 ( P:)"()Au )h ,,( Pty Ay ) >0
e (x) rA(x) | 0 A(x) rA

g lrox) =

The first equation shows that. for small viscosity p. g, > 0 if the flow is
supersonic (i.e.. when |¢o] > (p)'?), while g, < 0 if the flow is subsonic (i.c..
when || < ( p')' 7). We are interested in transonic flow. i.e.. when |¢} is close to
the sonic speed ( p')'°. Thus we assume that [¢| # 0. and so k() # 0. We see
that the nozzle equation (1.11) shares properties analogous to (1.3). (1.4) for the
model (1.1). For this reason, we will call the positive (negative) states u > 0
(u < 0) for (1.1) superscnic (subsonic) and call the zero state sonic. It is clear
from the thave equations that for a converging duct. i.e.. r4’(x) < 0, we have
c(x)k'(r) > 0. This is the reason we called the unstable case (1.7) the converging
duct and the stable case (1.6) the diverging duct.
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Our main interest is in the properties of solutions for small e. The inviscid
theory, £ = 0, has been worked out by Liu in [4]. This is reviewed in Section 2.
We also remark that a new type of boundary layer with algebraic decay exists.
They correspond to rarefaction waves connecting to the sonic state, Remark 2.1.
In Section 3 we present an analysis which shows that any general solution of
(1.1), (1.2) is close to one of the corresponding inviscid solutions. Our analysis
differs markedly from the usual asymptotic analysis where solutions of viscous
equations are constructed based on the inviscid solutions. In the stable case (1.6),
it follows easily from the maximum principle that there exists at most one
solution. The inviscid theory predicts that in the unstable case there are one or
three solutions, depending on the data (1.2). With the a priori qualitative
understanding obtained in Section 3, we show in Section 4 that (1.1), (1.2) with
(1.7) has exactly one or three solutions by proving a local uniqueness theorem.
For solutions with no interior layer, this is done by generalizing and refining the
classical argument of Coddington and Levinson [2]. For solutions with interior
layer, a new argument is introduced for the local uniqueness theorem.

In Section 5 we present a stability analysis for solutions of (1.1) viewed as
stationary solutions of (1.8).

There have been studies on singular nonlinear Sturm-Liouville problems: see
[3] and references therein. However, these studies do not consider models with
the strong coupling property (1.4). As we show here, this coupling property has
the regularizing effect that viscous solutions are close to the inviscid solution.
In the absence of (1.4), the inviscid theory often offers too many solutions, most
of which do not correspond to viscous solutions. With (1.4) there arise new
analytical difficulties, some of which are resolved here. It would be interesting to
study more general convective reaction-diffusion equations such as the full
quasi-one-dimensional nozzle flow equations (cf. references in {4]).

2. Inviscid Theory

In this section we review the time-asymptotic states for
(2.1) u + flu), = c(x)h(u).

We then present a brief account of that theory. Except for boundary or interior
layers, the solutions of (1.1) should satisfy

(2.2) f(u), = c(x)h(u)

as £ > 0,. Interior layers would tend to stationary shock waves (u . u ) of (2.1)
satisfying the jump condition and entropy condition

(2.3) flu) =f(u ). u,<u .

An inviscid boundary layer (u,, u,) at x = 0 would correspond to stationary
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waves of (1.1) at x = 0 which in turn satisfy approximately
flu), =eu,, u(0)=u, wu(0)=1uy, wuc)=0,

since in the layer the source c(x)h(u) has little effect. Integrate the above
equation from x = x to x = 00 to get

(2.4), eu (x) = fu(x)) = f(uo). u(0) = u;, u(o0) = ug.
In order for the above equation to have a solution, we need
(2.4) (u— ug)(f(u) — f(uy)) <0 forall u between u, and u,.

Thus an inviscid boundary layer (u,, u,) of (2.1) at x = 0 would correspond to a
limit of viscous boundary laycrs of (1.1) if and only if (2.4) holds. Similarly, a
boundary layer (u,. u,) at x = 1 satisfies

(2.5), eu (x) = flu(x)) = f(ug), u(l) =u,. u(-x)= u,.

(2.5) (u— ug)(f(u) - f(uy)) >0 forall u between u, and u,.

Conditions (2.4) and (2.5) can be related directly to elementary waves for
(26) “1+f(u),x=0'

There are two types of waves for (2.6). Two states . and u. can be connected
by a shock wave (u . u ) with speed

_ .f(uo)—f(u,)
o= ‘—2tr I 7

u,—u

if w,<wu . When w,>u_, (u_,u,) i1s a rarefaction wave propagating with
characteristic speed f’(u). This is so under the convexity condition f"(u) > 0,
(1.3). It can be seen easily that (2.4) holds if and only if (u,. u,) constitutes an
elementary wave for (2.6) with negative speed. Similarly. (2.5) holds if and only if
(u,. u,) has positive speed.

Remark 2.1. Formal asymptotic expansion for boundary layers at x = 1 can
be performed to yield (2.5}, as follows: Write

u(x) = U(x) + v(n).
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where U(x) is valid outside the layer and therefore is close to being an inviscid
solution satisfving (2.2), and v(n) is valid in the layer. Plug the expression into
(1.1) and compare the coeflicients of « ' to obtain '

e+ f'le)e’ =0,
c(0) = u,. e{oc) = ') = 0.
Integrate above to vield (2.9),,.
o= fle), el0) =u,. r(x) =0,

From this we notice that in the case of a rarefaction boundary layer. u, > 0. r(n)
decavs algebruically as a consequence of (1.3). When f(u) has higher-order zeros
at u = 0. the decay rate 1s lower. This 1s in contrast to the usual tvpes of
boundary lavers. where the decay is exponential.

The above can be summarized as follows: Solutions of (1.1). (1.2) would tend
to mviseid solutions which satisfy (2.2) except for possible discontinuities. The
discontinuities at § < v < 1.x =0 and x = 1. would satisfy (2.3). (2.4) and
(2.5). respectively. Such an inviscid wave pattern is called an asymptotic state
because it represents the large-time state of solutions with given end states at
x = + ¢ (see Liu [4]). We now describe all the possible tvpes of asvmptotic
states with given end states u, and u,.

Besides hvpothesese (1.3) and (1.5) we turther assume that

(2.7) him )

hlu)
luy + > f(u) _0.

Since c(xyha(u) < 0. (1.5), a solution u(x) of (2.2) moves toward the sonic state
zero as x increases. Condition (2.7) ensures that given a state u there always
exists a state @ such that & and u are connected by a solution of (2.2) with values
& at v =0 and w at x = 1. Since (2.2) is singular at ¥ = 0. and f'(0) = 0 by
(1.3), there are two states u* and u,. with u* > 0 > u,. each of which is
connected to u = 0 by solutions of (2.2). Given a state u # 0, define . uv < 0.
satisfying

S(u) = f(u)

so that v and u form a standing shock wave, (2.3).
Consider first the stable case (1.6), c(x)A'(u) < 0. It is easily shown that in
this case

(2.8) ut > i,
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Case A, u; £ u,.

Cuse Al. When u, 2 0. the asymptotic state consists of a backward wave
(u,. uy) at x = 0, a subsonic stationary wave connecting u, at x = 0 and u =0
at x = 1, and a forward rarefaction wave (0, u,) at x = 1. The backward wave
(u,. uy) 1s a shock (rarefaction) wave when u, > u, (4, < uy).

Cuse A2. When u, < 0. the asymptotic state consists of a backward wave
(u,.@,) and a stationary wave (4,. u,).

Cuse B, 1, <u, < u*.

Cuse B1.  When u, > 0. the asymptotic state consists of a supersonic station-
arv wave (u,. u ) for 0 £ x < x,. a stationary shock wave (u . u_ )Yat x = x,.a
subsonic stationary wave (u,.0) for x, < x <1 and a supersonic rarefaction
wave (0. u,) at v = 1. The location x = x,, and the states u ., u . of the standing
shock wave are determined uniquely by the left state u,.

Cave B2, When wu, <0 and @, < u,. the asymptotic state consists of a
backward shock wave (u,. @) and a subsonic stationary wave (&,. u,).

Case B3. When u, < 0 and &, 2 u,. the asymptotic state consists of a
supersonic stationary wave (u, u ) for 0 < x < x,,, a standing shock wave
{w .u_)at x = x, and a subsonic stationary wave (u .u ) for x, < ¥ < 1.

Case C. wu, =z u*. Define u; with &, = u,,

Cuse Cl. When u, > u,. the asymptotic state consists of a stationarv wave
(u,. up) and a forward wave (u, u,) at x = 1,

Case C2. When u, < u; < 0 and &, 2 u,. the asymptotic state consists of a
stationary wave for x # x, and a stationary shock wave at x = x,,.

Case C3. When u, < u; < 0 and i@, < u,, the asymptotic state consists of a
backward shock wave (u,, i&,) at x = 0 and a stationary wave (&,. u,).
Next we consider the unstable case (1.7), c(x)A’(u) > 0. In this case we have

(2.9) ity > u* > 0.

Case D.  u, < u*.

Cuse D1. When u, > 0. the asymptotic state consists of a backward wave
(u,. uy) at x = 0, a subsonic stationary wave (u,.0) for 0 < x < 1, and a forward
rarefaction wave (0, u,) at x = 1.
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Case D2. When u, < 0, the asymptotic state consists of a backward wave

(u,. @,y at x = 0 and a subsonic stationary wave (#,, u,) for 0 < x < 1.

(3.1) lim

Case E. u* < u,. Define u; by &, = u,.

Case E1. When u, > 0 and u* < u, < u,, there are three asymptotic states:

(i) a supersonic stationary wave (u,, u;) for 0 £ x < 1 and a forward wave
(u, u)at x =1,
(it) a supersonic stationary wave (u;, u_) for 0 £ x < x,, a stationary
shock wave (u_, u,) at x = x,, a subsonic stationary wave (u,0) for
X, < x < 1 and a forward rarefaction wave (0, u,) at x = 1; x5, u_, u,
are uniquely determined by u,;
(iii) a backward shock wave (u,, u,) at x = 0, a subsonic stationary wave
{1y.0) for 0 < x < 1. and a forward rarefaction wave (0, 4, ) at x = 1.

-

Case E2. When u, > 0 and u, > u,, the asymptotic state consists of a
stationary wave (u,, u,) for 0 £ x < 1 and a forward wave (u,, #,) at x = 1.

Case E3. When u, < 0, there are three subcases: (i) if u, < u, < 0, then
an asymptotic state consists of a stationary wave (u,, ;) and a forward shock
wave; (1) if &, > &,. then it consists of a backward shock wave (u,, @,) and a
stationary wave (i, u,); (iil) if ¥, <u, <0 and u,> &,, then there also
exists an asymptotic state which consists of transonic stationary waves with a
stationary shock wave at x = x;, determined uniquely by u, and u,.

Thus, given end states u, and u,, the inviscid theory yields three solutions
for Case E1 and also (iii) of Case E3. It can be shown easily that the above is
a complete description of asymptotic states and that an asymptotic state
depends smoothly on its end states.

3. A Priori Properties
As in Section 2, hereafter besides (1.3)-(1.5) we also assume that

h{u
luj~oo f(1

S

)=0.

LEMMA 3.1.  Any solution u(x) of (1.1) belongs to one of the following three

types:

Type I u(x) is strictly increasing;
Type 11:  u(x) is strictly decreasing;
Type W11:  u(x) has a unigue critical point which is an absolute minimum.

Proof: This is an immediate consequence of the hypothesis (1.5),

c(x)h(u) < 0.
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LeMMA 3.2, There exists a positive constant M depending on u, and u, and not
on & such that any solution of u(x) = u(x; &) of (1.1), (1.2) satisfies

lu(x)| < M, 0<xx<l.

Proof: The lemma holds trivially for monotone solutions. Let u(x) be a
Type III solution of Lemma 3.1 with minimum u(x,) at x = x,. Integrate (1.1)
from x = x, to x = 1, and use (1.5), ch < 0, to obtain

(1) + fu(xo)) = f(u,) = [ elx)h(u(x)) dx

= f(u,) + f‘lc(x)h(u(x))ldx_

Since A'(u)} # 0 and u(x) is strictly increasing for x, < x <1, h(u(x)) is
monotone for x, < x < 1. When

max h(u(x)) = h(u(1)) = h(u,),

wexgl

we have from (3.2) and u'(1) > 0 that

f("(xo)) <f(ur) + h(“,)flc(x)dx

Xy
which is bounded independent of & and so the lemma is proved. When

max h{u(x)) = h(u(xy)).
XSsxsg)

we have again from (3.2) that

flu(xg)) < fu,) + h(u(xo))flc(x) dx.

Xg

This estimate and hypothesis (3.1) yield an upper bound independent of ¢ for
|u(x,)| and therefore for [u(x)[,0 < x < 1.

LEMMA 3.3, Suppose that u(x).a < x < b, is a strictly increasing (decreas-
ing) solution of (1.1), (1.2) and that u(x) > — Ce'/* (u(x) < Ce"/*), a < x < b,
for some C > 0. Thenb — a= O(1)eé"? ase = 0.
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Proof: We consider only the case when u(x) is increasing: the other case is
similar. Integrate (1.1) from a to x to obtain

ew(x) = ala) = flul(x)) = f(u(@) = [ e(3)nlulr) dv.

d

1/4

Since u is increasing, u(x) > w{a) for x > a. and u(a) > —Ce /", we have from

(1.3) that f(u(x) — f(u(a)) > — 1C%"". Thus the above yields
L T i, v
e’ (x) 2z —5C"" — fc(_y)h(u(y)) dv for a<x<b,
Integrate this from « o b to vield
I ., , ra
eulbh) —eula) > —5C*Hb —a)e’? - f f c(vYh(u(rv)) dydx.

By assumption, ¢(x)h(u) < 0, and from Lemma 3.2. |u] < M. Thus, the above
estimate vields

1 5., )
2eM + 5(‘“5‘ (b—a)zD(b—a).

for some positive constant D. The lemma follows immediately from this
inequality.

In the following two lemmas we study the solution of (1.1). (1.2) outside the
lavers. In all cases we assume that x, — x, is of order one. t.e.. x; — x, > Ce' ®

for sutficiently large C.and 0 € x, < x; < L.

LeMMa 3.4, Ler u(x) be a solution of (1.1). (1.2). Set

N

¢ = 3( max f”(u))( )maxl[((.\')h(u)'

luj = M

Sz

.[ulv;\I
g(x) = flulx)w(x) = c{xYhiu(x)).

(1) Suppose that w'(x) > 0, f(u(x)) < -~ * for x, s x £~ and
g ()< Cie % Then lg(x) | g Cie' " xy = v g x,. for e sufficiently small.
(1) Suppose that w'(xy < 0. f(u(x) > € * for xo s v < x; and |¢(x,)] <
Cret * Then l@(x)] g Cie' o xy g x < Xy for e sufficiently small.
Proof:  We shall prove (i) (ii) follows by similar arguments. Suppose that
the conclusion fails. Then there exists X, x, £ ¥ < x;. such that

4

lp(x)] s Ce* for x,<x <X,
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and either
(D e(X) = Ce%  @'(X) 20,
or
(1) (X)) = —Cp*, @(x)=0.

We treat (I): (1T) is similar. Relation (1.1) is the same as eu”(x) = @(x). With (I)
we have

o= 3
u'(x)=Ce V4

4

S (3) + (a3 (X)

(D A(u(X)) — (VR (u(XNu'(X) 2 0.

I 4

From the hvpothesis f'(uv) < —¢' * the above vields

Ce 'z (DN a(R))
(3.3

— (XY u(X)) = (VR (X)) (x).
On the other hand. from () we have
Flu(XNu(x) - cAX)h(u(3)) = Ce' 3

1

and by Lemma 3.2, ju| < M. Since. by hypothesis. f'(1) < —¢' /it follows that

wWix) < l max |l xYh{u)| + Ce 4)9 v
v |

Dove
i M

This and (3.3 vield

vy

S
(¢

A
to

e, M

max f”(u){( max |c(x)h(u)]] e P+ (',3)

VO vl
‘u;;‘l

+ omax e (xYh(u)|

vl
w .\

+

- max ﬂ(-(,\)h'(u)\( maxll('(x)h(u)lf ey
0 - O=vs

R L

ll= M e M

This contradicts the definition of ¢, when e is sufficiently small.
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PROPOSITION 3.5. Suppose that u(x) is a solution of (1.1), (1.2) and is strictly
monotone over a subinterval (x,.x,) of (0,1). Then there exist C>0 and a
subinterval (x,, x3) of (xq, Xx;) such that, for sufficiently small .
lo(x) =] (u(x))u'(x) ~ c(x)h(u(x))| < Ce/* over (x,. x3) and

Jx; = Xol +1xa = x| < De’®
for some positive constant D independent of e
Proof: In view of Lemmas 3.3 and 3.4, we only need to show that. for
strictly increasing u(x). there exists x, with |@(x;)]< Ce/* and |x, — x,) =
O()e** and. for strictly decreasing u(x), there exists x; with lp(x;)]< Ce™
and |x, — x| = O(1)e"® for any given C > 0. Consider the case u(x) is increas-

ing. Suppose that |g(x)}2z Ce'/* xy < x < X. for some X > X, and C > 0.
There are two cases:

(n glx)> Ce* for x,<x <X,
or

(11) g(x) < —Ce¥* for x,<x<x

In Case (I) we have from (1.1), eu”(x) = @(x). that u”(x) > Ce P for x, < X
< X and so by integration

wix) 2 Ce P = x) +u'(xy) 2 Ce THx ~ X)) xp gy g

Integrate again to obtain

u(X) ~ u(xgy} 3 X=Xl

v

C oy 2
5 (
Since u is increasing. 2M 2 u(X) — u(x,) and aiso the above vields

4 (/1 )
M) 8= E.

X~ x,< (—C‘

Thus we have shown that [q(x,)| < C&/* for some x,. xq < X3 < X, + L. This
proves the lemma for Case (I). Other cases are treated similarly.

We next study boundary and interior layers.
LEMMA 3.6.  Use the same notations as in Proposition 3.5.

(i) When u'(x) > 0. x5 < x < x;, then u(x) <0, x5y <X < x5, and x, can
be chosen so that either eu’(x) 2 C;¢/* and {u(x) ~ u(x,)|= 0Mye*® for
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X< X <X, or eu'(x) < —CE* for xo £ x < x50 x; can be chosen so that
either x, = x, and f'(u(x;)) < — C1e/* or x5 < x| and f'(u(x,)) = —Cie'/%

(i) When u'(x) < 0, xy < x < x|, then u(x) > 0, x, < x < x,, and x, and
x5 can be chosen so that x, = x, and either x, = x| or x3 < x;. In the case
X, < x; we have either |u(x) — u(x))|< De¥® for x; < x < x) or @(x;) =
— C,&* and f(u(xy)) — f(u(x,)) = — De** for some D > 0 independent of .

Proof: (i) The second part is a direct consequence of (i) of Lemma 3.4. It
follows from Lemma 3.3 that u(x;) < 0. Since «’(x) > 0 and u(x) is close to the
inviscid wave, by Proposition 3.5 we have u(x) < —C, x, < x < x,, for some
positive C independent of &. When x, = x,, (i) holds trivially. If x, > x,. then
by (i) of Lemma 3.4 we may assume that |@(x,)|= C;e"/* and |p(x) |2 C¢' *
for x, < x < x,. There are two possibilities:

(1) g(x) 2 Ce® for xo<x<x, and g@(x,)=Ce™
(1) ¢(x) < —Ce* for xp<x<x, and ¢(x,)= —C ™

In (I). «”(x) > 0. Since ¢(x,) = C,¢"/* and u(x,) < ~C.

. . ~ 14
wix,) = <(~\:)h(“(»‘z)) " Cye <C

f'(u(xy)) [(u(xy))

for some (7 independent of e. Thus u'(x) < C’ for x, < x < x,. From Proposi-
tion 3.5, v, - x| = O(1)e* ® and so we have

ulx,) —ulxy) = /‘311’(.\') dv = O(1)e* &,

Yo

Case (I1) corresponds to the case eu"(x) < — Ce' ™ for x, < x < x, in (i). This
proves (i).

(i) That x, = x, follows from (ii) of Lemma 3.4_[f x, < x|. then by (11} of
Lemma 3.4 we may assume that |@{x,)|= Cie"* and |q@(x}[= Ce * for
Yo ox <y solong as f(u(x)) > €74 When @(x;) = Cje' * we can show, just
as 1 Case [ above, that [u(x) — u(x,)|< De*™ for xy £ x < x,. Consider next
the case g(xv) = —Cet ¥ and ¢(x) < —~Ce* for x, £ x g x, and f'(u(x))
2 ¢ % In the case f(u(x)) 2 ¢ for x, < x £ x,. we see by integrating (1.1)
that

eu'(x)) = () = flulx)) = flu(xy)) + f\lv(,\')h(u(.\')) dx.

\a
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From ¢ (x;) = = ¢ * and f(u(x,) = €% we have

(x) = - Cet () h(u(xy))
il Fa(x)

= O0(l)e '

Thus in view of the above estimates and Proposition 3.5 we conclude that

ii

f\lc'(.\‘)h(u(.\')) de — ew'(x)) + eu'(x;)

AR

Flulxy)) = flulx))

v

f\‘v(.\')h( w{ X)) dv + ew'( xy)

A

i

O(1)lx, — xyf+ O(1)e*
= 0(1)e ¥,
This completes the proof of Lemma 3.6.

LeMMAa 37, Suppose that u(x) is a solution of (Y.1).(1.2) and has a minmun:
at x = x,, not near the boundary x =0 or x = 1 i, Ce** <, < 1 = Ce* ™ for
sufficiently large positive constant C. Then there exists x, X,y x| < X, < X, such
thar q(xy = ~Ciet gixy) = Ciet *jx, — xl € Det Su(y)) > 0> utxs)
and L F(u(x ) = flulx 1) (< D™ for sonte positive constans D.

Proof:  Since w'(v) > O for v, < x < 1. and @(x,) = —c(xh(u(x,) >0
and w”’(x,) = ¢ 'g(x,) it follows from (i) of Lemma 3.6 that there exists
Naony > v Lowith gy = Cet ™t and [l xg) — u(xs) ] + v, = xl = O ™
Moreover. u(x,) < = C for some positive C independent of e Similarly, from
(it) of Lemma 2.6, there exists x, with x; < v, and @{x,) = —Ce' *u(x,) > C
and |x, - x| = O(De' ¥ It remains to verify the last estimate in the lemma.
Integrate (1.1) from x| o x, to obtain

eu'(x,) —ew'(x)) = flulx:)) = flu(x)) - f‘:c(,\')h(u(v\-)) dx.

Y
Since ¢h = Ol |x, = v,| = 0" and

wix) = g(x) + c(x)h(u(x))
' f(u(x))

which is bounded at x = x, x, because |u{x)|> C there, we have

Flulx,)) = fulx)) = 0()e + O(1)(x, - x,) = O(1)e"

This proves the lemma.
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THEOREM 3.8, Let wu(x) = u(x. &) be a solution of (1.1). (1.2). Then for ¢
sufficiently small, u(x. €) is close to an inviscid time-asymptotic solution of (2.1)
with the same boundary data u, and u,. More precisely. there exists an inviscid
solution u(x,0) with boundary data u, and u, such that

(1) if u(x.0) has a boundary layer (u, u;) at x = 0. then there exisits
0 < x, = O()e'™® such that u(x,) — u; = O(1)e¥/® and u(x) is monotone over
(0.x,):

(1) if u(x.0) has a standing shock wave (u,, usy) at x = x,, then there exist
Xy x3.0 < x, < x, <1, such thar |u(x,) — uy| +{u(x;) — us]= O(1)e¥¥,
X3 — xa) = O ™® and u'(x) < 0 for x, < x < x3;

1y if u(x.0) has a boundary layer (u, u,) at x = 1. then there exists
X1 = O()e'™® < x4 < 1. such that u(x,) — uy = O(1)e** and u(x) is mono-
tone over (x4 1),

(v) owtside all possible lavers of the types (1)-(iil).

[Flu(x)) = c(xYh{ulx))] = O(1)e* and |u(x) — u(x.0)] = O(1)* .

Proof: From Proposition 3.5 we see that a monotone solution (u(x) of (1.1).
(1.2) 1s close to being inviscid except for possible boundary layers. Lemma 3.6
says that the boundary layers almost satisfy the inviscid boundary conditions
(2.4) and (2.5). Consequently. we can find u,. i,. 1, and u, with the property that
(u,. u;) is an admissible inviscid boundary layer at x = 0, (u,. 4,) an inviscid
stationary wave. (u,. 4,) an admissible inviscid boundary layer at x = 1, and
lu, = w)| + 5, — ulx)| +la, = ulx)| +u, — @, = O1)e*, for some x,. x,
with the prescribed properties in (i). (i1i), (iv) of the theorem. We denote by ¢(x)
the inviscid time-asymptotic state with boundary values u, and u,_. From the
inviscid theory of Section 2, there are at most three solutions to the inviscid
problem with given end states. Moreover, the inviscid stationary solutions and
the layers depend smoothly on its boundary values. Since (u, ~ u,{ + (u, — u,| =
O(1)&**, we conclude that there exists an inviscid solution (#(x.0) with bound-
ary values u, and u, such that u(x,0) is close to u(x) in the sense of (1)-(iv).

For a nonmonotone solution u( x), it follows from Lemma 3.1 that u(x)has a
unique minimum at x = x,. There are two cases: (I) x, is close to x =0 or
x = 1. (Il) |xo) > Ce*™ and |x, — 1] > Ce*/® for some large positive constant
C. In the case where x, is close to x = 0, we have u'(x) <0 for 0 < x < x,,.
u’(xy) = 0 and so, by integrating (1.1) from 0 to x,.

ew(xy) — eu'(0) = flu(x,)) — f(u(0)) + /()““p(x)h(u(x)) dx,

—f(u(x,)) + f(u(0)) < /()M]"(X)h(u(ﬂ) dx = 0(1)xy = O(1)e'".
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Thus u(x) has a boundary layer near x = 0 which satisfies the inviscid boundary
condition (2.4) except for a small =rror O(1)c/. Siailarly, if x, is close to 1,
then u(x) has an admissible boundary layer at x = 1. Thus the above arguments
for monotone solutions can be applied to u(x) outside the layers and Case (I) is
treated accordingly. For Case (1I) we apply Lemma 3.7 to locate x, and x, close
10 X, X; < Xo < X3, $0 that u(x) has an interior layer in (x,, x;). The solution
u(x) is monotone over (0, x,) and over (x;,1) and so the above arguments for
monotone solutions apply again. This completes the proof of the theorem.

Remark 3.9. The above theorem does not yield an optimal thickness of the
layers and the distance between viscous and inviscid solutions outside the layers.
Suppose, for instance, that u(x) has a boundary layer at x = 0 and that u, > 0.
From Theorem 3.8, it is a shock layer, u'(x) <0 for 0 £ x < x, u'(xy) =
0. u(x,) <0 for some x,> 0. Moreover, for e sufficiently small, f(u,) <
f(u(xy)). From (1.1) we have

w(x) = S(f(u(x))w(x) = clx)h(u(x))).

ew'(x) = flu(x)) = flu(x,)) + f:"c(.v)h(u(y))dy, 0<xsx.

From the first identity and (1.5), ch < 0, we see that u”(x) >0 for x < x £
X u(X) = 0. Choose x,. X < x; < x,, wWith

Flulxa)) = f(u(x) = [ c(r)h(u(r)) v,

or
l“(xo) - “(xl)l = 0(1)ixp — X,

for some positive bounded O(1). Since u'(x,) = 0, we have
| f(u(x)) = fQu(xo))[ < [Te(Dh(u(y)) dy for x <x<xp

and so

eu'(x) = O(1)(x — xq),

for some bounded and positive O(1) and x; < x < x,. Integrate to yield

lu(xo) — u(x))| = P |Xo — x,1%
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Thus we have

o(1)

|xo = xllz = 0(1)|xy — xy),

or
1xo — X1 = O(1)e, lu(x,) — u(x,)] = O(1)e.

Between X and x,. we have
1)) = fu(x))| > [Te(p)h(u(r) 4y,
50

ew'(x) = O(1)(f(u(x)) = f(u(x,)). X<x<x.

Integrate it from X to x,:

0 du i .
[ Fraty =y ~ 0Wa -9,

or

O(1)eloge = O(1)(x, — X).

Thus we conclude that x; — x = O(1)eloge, a similar estimate holding for
X = 0. Thus the thickness of the boundary layer is of the order ¢log . The same
holds for other layers as well. Details are omitted.

4. Local Uniqueness and Bifurcation

We want to establish a local uniqueness theorem which, when combined with
the a priori estimates of the last section, determines the exact number of solutions
of (1.1), (1.2). For this we employ the shooting method. Let u(x) = u(x, & B) be
a solution of (1.1), with initial slope B:

(4.1) u(0) = u,, uw(0) = 8.

The following crucial lemmas establish the dependence of #(x), x > 0, on the
initial slope 8. Set

(4.2) w(x) = ﬁua_(ﬁx_)
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It follows from differentiating (1.1) and using (4.1) that

(4.3) ew” — f(u)w + mw /= 0. ’

m=m(x)=c(x)a(u(x)) — f(u(x))u'{x).

(4.4) w(0) = 0. w'(0) = 1.

It is often convenient to rewrite (4.3) as

(4.5) ew” — {f{u)w) + c(x)h(u}w =0.
The first lemma deals with the easy stability case. (1.6).

LEMMA 4.1, Suppose that c(xYh'(u) < 0. Then w(x) > 0 for all 0 < x < 1.

Proof: Integrate (4.5) repeatedly to yield, for 1 2 x > x”" 2 0.

ew (XY = e (X)) + flu(xDwlx) — f(u(x)w(x) - f\’(‘h'w('r) dr.

Y

wix) = u'(.\")exp:flﬁguf—)(g—)dg}

+ [w'( Ny - ﬁ%—'\'—’)—)w(.\-’)}f:cxp-" - I\M dg; dv

[N €

- -i-ffq\-fft-(7>h'(ll(7))uv(T)exp«{—f'f—(e@ dt } dr.

Setting x = 0. it follows since, by hypothesis, ch’ < 0 that w(x) > 0 so long as
w(y) > 0for0 <y < x By (4.4)itis clear that w(y) > 0 for » close ta 0. This
proves the lemma.

THEOREM 4.2 Suppose that c(x)h'(u) < 0. Then (1.1). (1.2) have a unique
solution which tends to the corresponding inviscid solution as ¢ — 0 .

Proof:  Uniqueness follows from Lemma 4.1 or by the maximum principle.
The existence of solutions is established by the shooting method. We defer this
until later when we deal with the issue for the unstable case in Theorem 4.7.

For the remainder of this section we treat the more interesting and much
harder instability case ¢(x)h'(u) > 0. For this we need to look at the boundary
lavers and interior layers separately. The first lemma on a single boundary layer
refines the classical result of Coddington and Levinson [2]. Throughout. we
assume that ¢ is small.
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LemMa 4.3, Suppose that u(>) is a solution of (1.1}, (1.2) and has only a
boundary laver at x = 0. That is. there exists x, = O(1)e such thar (2.4) holds with
uy, = u(xy) and u'(x) = O(l) independent of & for x > x,. Then the solution w(x)
of (4.3). (4.4) satisfies w(x)> O for 1 2 x >0 and w'(x) > —AXe 'w(x) for
x> De'’? and a constant N = Cé%, where C and D are positive constants
independent of e.

Proof: We first show that. for some x, = O(1)&'/"

(4.6)
u'{x) = 0(1), x2xsl.

The latter estimate follows from the results of the last section. Remark 3.9.
stnee v, lies outside the layer. Our proof for (4.6) is carried out along the same
line as similar arguments in Coddington-Levinson [2]. except for some refinement
due to the boundary laver. We note that in [2] the authors dealt with onlv the
subsonic case and we need to treat the transonic case. Integrate (4.5) from 0 10 v
to vield

(4.7, ew () = fMludnw(x) =¢— /\((T)h'(u(r))u'( T)dT.

i

Another mtegration results 1n an expression for w(x):

(470 wi) = [E(ea)ds - 1 [Cetrym u(r))u‘(r)fllf(,\. o) dsdr.

gl 1

where
F{v.y) = c(p' 1f\f'(u('r)) dr |~.
f e J, !

Let & = Ot ° be such that flu(x) < -k <0 for £ < v < 1. for some
k>0and Vo= max{|f(alx)] 0g x <€) Set x, =&+ L' 7 where [ =
b+ O(MNE ' Then for0 = s < ¢

™~
s

-
A

N .
< exp) L (8 —.y): < exp{ MO(1)e ')

_l\- )
E(v. &) = cxp: — (v - g)} <exp{ —hLe '),

E(x.s) < exp{(—kL + NO(1))e' *} < exp{ —ke ' 7).
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Thus. for x z Xy,

fOxE(x.s) ds = f:E(x,s) ds + f:E(x,s) ds

< /:exp{-kev\/z} ds + j:exp{— ~l:—(x - s)} ds

2
=

A

Similarly. the second term in the right-hand side of (4.7), can be written as the
sum of J, and I,, where

I

i

- %f:c(r)h'(u(r))W(r)[fE(x, s)ds + f:E(x, ) ds] dr,

I,

l

- %f;c(r)h'(u(r))w(r)fxf(x‘ 5) dsdr.

2n

L %f:lw(s)l[exp{-ke*‘”z}+%]dr§ AAIBIES

iIA

(] < %L‘Iw(s)[ds, where [c(x)A(u(x))| < n. 0<xsl

Combining these estimates we obtain

)i s B+ 5 [ Ius)as

and this in turn implies

and
2¢ 2xn 2xe (2n)
1+ 16 = T(CXP{T} - 1) < TeXpiT},
Thus

w(x) = f(:E(x. 5)ds + xO(¢).




STURM-LIOUVILLE PROBLEMS AND APPLICATION 51
As in [2]. we may show that by taking care of the boundary layer,

~ ¢ — E(x o) xO(¢)
() = ey 7 EC O PGy T GG

for x > x,, and by (4.7), we have

1+ 0(e) + x0(1) + [exp{z—,':i - 1}]

iw'(x)]

IA

or
wi(x)=0(x+¢) for x3zx,.
This proves (4.6).

Let A be a small positive constant to be determined later and set

w(x) = v(x)exp{— M}

€

We have

™[>

w(x) + v’(x)exp{— %1}

wi(x) =

From (4.6) we have
v(x,) >0, v'(x,) >0,
provided that A 2 Ce'/* for some large C. By (4.3) and the above it follows that

e’ + (—f(u) +2A)0

(4.8)

NESERYAO)
£

+ f"(u)u + c(x)h'(u)|e =0.

In view of (4.7) we know that
[ f(u)u + c(xyh'(u)]| = O(1).

for x, s x < 1. By Theorem 3.8, outside the layer, x > x,. u(x) is close to the
inviscid stationary solution which is subsonic, f’(u(x)) < 0. Thus we can choose
A small such that the bracket in (4.8) is positive. One such choice is A = Ce'/2 for
some large C. Thus the lemma is proved by the maximum principle.

LEMMA 4.4.  Suppose that u(x) is a solution of (1.1), (1.2) and has only one
boundary layer at x = 0 or x = 1, but not both, and has no interior laver. Then the




i
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solution wixy of (4.3v with ecither w(®) =0, w'(0) =1 or w(l) =0 w'(1)=1
sansties ciaher wily > U w’(ly > - Xe Le(ly or wi)y < 0.w’(0) < Ae 'w(0) for
some A= (et

Proof:  Suppose that w(h) = 0.w’(0) = 1. The femma is reduced to the
previous one if the boundary Javer is located at x = 0. Suppose that the
boundary faver is Jocated at x = 1. Then by the same argument as in the last
proof we can show that the solution ®(x) of (4.3) with w(l) = 0. w'(1) = 1
sdtisties Wy < 0. Since the Wronskian wix)w'(x) ~ w(x)w’(x) does not change
sizn and is positive at v = 0, we see that w(l) > 0. Other parts of the lemma are
proved sumtarhy.

LisvMa 450 Suppose that wt 1) is d solution of (1.1 (1.2) with only an interior
laver. that is. there exists x,, and x".0 < x, < x" < 1, such that ju'{x)|= O
mdependent of & for x & (xo. XL = vl = Qe flugx!")) = flutx,n +
Olye, gy, > 0 ~ wix"). Then the solution w(x) of (4.3). (4.4) satisfies w(x) > 0
for v o v owlay ) = owix) > O for x > xy for some x not in the interior laver,
Voo wath by =i = Othellog el Moreorer. wlx))y < 0. and for some con-
stants C.D =~ Oow’ixy < Ae 'w(x)yorx >, + De Zand X = (e 7

Proof:  The proof consists of three steps investigating the behavior of w(.x)
before the laver. in the laver, and after the laver.

Seep 1o Let A be a positive constant 1o he determined later and set

) = el dexn! MU
(4.9) wix) —!(,\)pr( FaE
We have from (4.3, (4.4 that
. R o AN
(4.1 wiy) = 6_\\(,\)+((.\)pr-\TJ

. ' Nt Y
(4.11) e (2N = fu)) e + o “/(u)-; + mir = 0.

{0) = 0. o'(0) = 1.

From Theorem 3.8 we know that u(x) is close to a supersonic inviscid stationary
wive for 0 < v < v, Thus we may choose a small A such that (A —
feutxnArye b= -1 for 0 < x < x,. Since m(x) is bounded over 0 £ x < x,,.

§—f’(u)%+m<<~l. 0

IIA
-~
A

Xy

Thus. by the maximum principle, applied to (4.11). (4.9)-(4.11) imply that
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(X)) > 0. e’(x) > 0 and
w'o> %w for 0 <x < ux,.
This and (4.3) vield

ew’ = fu)w’ — mw > [é%;l - m

w + %f’(u)w'_
and so. for small ¢,

flulw” for 0<x <,

o] —

e >

This and the mnal data (4.4) for w yield

K...
wi(x) > exp-{ a

L.

£ )

)t‘(j‘) > %‘Cxp{ﬁ:} -1 .
A

for some K, > 0.

Step 2. Define x* by u(x*) = 0, x5 < x* < x". Integrate (4.5) from 0 to x*,
to obtain

ew'(x*) = ¢ - /)‘.C(x)h’(u(.\'))w(.\') dx.
(

Since x* is within the layer we have from Lemma 4.4 that w(x)> 0 for
0 < x £ x*. Moreover, we have the estimate (4.12). Thus the above yields
w'(x*) < 0 and we conclude that

w'(£) =0 forsome £, X, < X < x*,
(4.13)

wi(x) <0 for £<xgx*

Step 3. We want to show that there exists x; > X, |x, — X| small, such that
w(x,) = 0. For the moment we assume that

(4.14) w(x) >0 for 0<x <x,

for some x; > X. We have either x; = 1 or x; < 1 and w(x,) = 0. From Lemma
4.4 we know that x; does not lie in the interior layer. Integrate (4.5) from £ to
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X. X < x < xy, then

ew'(x) = f(u(x))w(x) = f(u(2))w(%)
(4.15) )
~ [ G)Iwiy) &

From (4.14), (4.15) and u(%) > 0 we obtain

(4.16) ew'(x) < f(u(x))w(x) for %< x <x.

Then (4.13). (4.16) yield

(4.17) wi{x) <0 for % <x<ux,.

Let ¥ = £ + De'/* for some large positive constant D. Then X is outside the
layer and X > X, where ¥ is charactenized by u’(X) = 0. Suppose (4.14) holds for

x, > X + De|log ¢| for some large positive constant D,. [ntegrate (4.3) from x
to x:

W(x)E(x) = w(%) — ¢ ['m(s)E(s)w(s) db.

{4.18) E(x) =exp{—%f_‘f'(u(.v))dy}'

m(x) = c(x)h'(u(x)) = f"(u(x))u'(x).

Divide (4.18) by E(x) and integrate to obtain

w(x) =w(x)+ W’(i)j:xE(y)"’dy
(4.19) *
- %‘[:E()’)_ldyf:m(s)E(s)w(s) ds.

From (4.14), (4.15), (4.17) we obtain
w(E) < T(f(u(®)) = 0(1)(E - £))w(X).

Thus (4.19) and the above yield

wix) < w(i)[l L LX) - 0()(F - %) L*E(y)_ldy]

[4

(4.20)
- LLEG) ) E(s)w(s) e,




y
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for X £ x < x,. Integrate (4.16) to obtain
w(s) = w(x)exp{f flutr)) u( )) } for X <55 x,.
Since m(s) is bounded, the above estimate yields
(m(sYE(s)w(s)| < Cw(X) for X< x<x,.
[}
for some C independent of ¢. This and (4.20) imply "

w(x) < w(x)

f(u(x))—O(l)(x )f E(y) ‘dy

X

(4.21)
+ 2 e () (y—x)d»]

Take x = x + 2¢|loge| in (4.21). Then we obtain

AT ("))fE( Ydy + %(j__’“s(y)“dv)

w(x) < w(X)

(4.22) x(O(1)2¢|log ¢| — 0(1)5““]

< w(x)[l + f—'(@fgs(y)”‘dy],

for € > 0 sufficiently small. It remains to show that the above bracket is negative
and thus contradicts (4.14). For this we expand E(y)~' by Taylor expansion,
taking note of the fact that u’(X) = 0, X is in the interior layer, and x > ¥ is
outside the layer,

(4.23) f(u(x)) = f(u(3)) + (x ~- ) (@) (u(§)),  x<f<x

Since |@(x)|g Ce/* for x 2 x°,

oy - ~Ch(u(x) - o)
S £ CTC) B

for some positive C, and x > x. Thus we have from (4.23) and (1.3), f” > 0, that

f(u(x)) > f'(u(%)) + C(x - %), X <x<x,
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for some € independent of e. Consequently,

il ' )
l:,{‘[(“(‘))d\,

(4.24) - c,\'p{ %fff’(u(.?)) + C{x - %)) dx}

[ € 2

1, _ 2 -
= c\p: - ?{/’(u(x))l(y - .\‘)}exp} e 0= X) oo X<y <
Let M =" /"(u(X)),. Then

A {‘iﬁ( vy ldv > .if/‘cxp-: - (= .\‘)"exp{ 3oy - o)y

M

> ‘\Al_f\c_\'pll/ - ‘—;('y ~ T)}(] + ZF("Y - f):) dv

‘,
= f’ll - c(p‘\ - 31(.\‘ - f)\~

Thus the bracket in (4.22) is negative.

To finish the proof we observe from (4.15) and w(x;) = 0 that w'(x)) ~ 0.
Since x| is on the right side of the interior layer, we may apply Lemma 4.3 1o
S win b w () o show that wix) < 0 for v > x,.

LiMMa 4.6, Suppose thar w(x) s a solution of (1.1) which either has an
mrertor laver not located within O e of x = O or x = 1, or hus no interior laver.
In the former case. the corresponding solution w(x) of (4.3). (4.4) has the property
that w(ly < O, and in the lutter case. w(l) > 0.

Proof:  Using Lemmas 4.3-4.5 and Theorem 3.8, 1t remains to treat the case
where w(x) has either an interior layer and a rarefaction layer at x = 1, cf. (i) of
Case ET i Section 2, or a boundary laver at x = 0 and a rarefaction laver at
v = 1. of (i) of Case E1 and Case D1 in Section 2. In all these cases the solution
is subsonic before the rarefaction layer, which connects the sonic state zero to the
positive state 1, around x = 1. We treat the case without interior layer; the one
with the interior faver is similar. From Lemma 4.3 we have. before the rarefaction

— e
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laver.
A N
wix) >0, w(x,) > w(xl)exp{ - ;(x2 — ) X, > X,
(4.25) w'(x) > —Ae 'm(x),
A=Ce? for x.x.x, in (%,1—6).

for some positive constant C and x, x,. x, outside the layers, 0 < 8§ < 1. By
Theorem 3.8, at x,, the solution u(x) is close 1o the inviscid stationary solution
r(.x). which is sonic at x = 1. The equation (2.2) which ¢(x) satisfies is singular
at sonic. Thus ¢'(x) is large for x close to 1. Consequently we mayv choose
v, = 1 — 28, so that. for § small, «'(x;) is large and thus

(4.26) mx) =c(x)V(u(x)) = flu(xNu'(x) < —=m,. x,<x<1.
for some positive constant m, independent of e. For any given 8 > 0 we have
(4.27) flu(x)) < —C,. V<x<1-3.
for some ¢, = O depending only on 8. Integrate (4.3) to get

WOV E(N) = wilxg) + f\%(xm(V))l:‘(.v)‘\‘(.s)d.\x
(4.2%)

Etx)

i

— d§

F_pfutg)
\p]-f\”-f - -

From (4.27) we have

,{
E(s) 2 c,\p: e v,<s <l =8,

Y]

This, (4.25) and (4.26) vield

1os] .
[0 0 mONEG ) w(s) ds

"y, Cily - "
L () fl "exp! - %(.s' - ,\,,):cxp; A,

¢ .. | € |

MWLY, b ¢, - A)s
X )/hﬂpu( ALY
0

: IR

mowlg) (¢ - A)dy
‘(-’ by thp




R .

——— —— - - —
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Since C, and § are positive constants independent of ¢ and A = Ce!/?, the above
estimate yields, for small ¢,

[ em) Ew(s) > )

Xg

This, (4.25) and (4.28) imply

wi(l —8)E(1 —8)> ~Xe 'w(xg) + fth%(—m(s))E(s)w(s) ds > 0.
Thus we have
(4.29) wi(x)>0 for x=1-25.

This and (4.25), w(x) > 0 for x = 1 — &, implies that w'(x) > 0 for1 — 8§ < x
< 1. Indeed, from (4.3) if w'(x) = 0 for some X.1 —§ < X < 1 and w(x) > 0,
then

ew'(x) = —m(x)w(Xx),

which is positive by (4.26), a contradiction. Thus w'(x) >0 for 1 - 8§ <x < 1.
In particular, w(1) > w(1 — §) > 0. This proves the lemma.

THEOREM 4.7. Suppose that c¢(x)h'(u) > 0. Then, for sufficienily small .
(1.1). (1.2) have one or three solutions which tend to the corresponding inviscid
solutions as € = 0. Moreover, (1.1), (1.2) have three solutions for small ¢ in Cuse
E1 and (iil) of Case E3 (in Section 2 for inviscid classification). and in other cases
there exists only one solution.

Proof: That there exist at most one or three solutions in each respective case
follows from the a priori estimate in Section 3 in linking the solutions to inviscid
solutions and the local uniqueness theorem as a consequence of Lemmas 4.4-4.6.
It remains to show the existence of a solution which is close to any given inviscid
solution. This is done by the shooting method. We shall carry out the analysis for
the case where there is a shock layer at x = 0 and a rarefaction laver at x = I:
other cases can be treated by similar arguments. For simplicity, we assume that
Uy > u; > 0 and u, > 0. The inviscid solution consists of a shock layer (u,, u,) at
x = 0, an inviscid stationary solution (u,,0) satisfying f(u) = c¢(x)h(u) and a
rarefaction layer (0.u,) at x = 1. We want to find a value a = a, so that the
solution u(x, a) of (1.1). with

u(0, a) = u,, (0, a) = a,

satisfies u(1. ay) = u,. For la| > 1,a < 0, i.e, f(u))a — c(OYh(u,) < —('lel""".
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we have from (i) of Lemma 3.4, that u(x, «) has a boundary layer at x = 0.
From (1.1), u” > 0 so long as u < 0 and u’ < 0. Thus «'(xy, a) = 0 for some
xo > 0. By Remark 3.9 on the thickness of boundary layer, we have x, = O(1)e.
Integrate (1.1) over 0 < x £ x, to get

—ea = f(u(xp, 0)) = f(u)) - fo""c(x)h(u(x,a» dx,

or
fu(xg, @) + O(V)emax{h(u): u(xq, &) <u<u} =ela| + f(u).

Thus from (2.7) we see that, as a > — oo, u(x,, a) = —oo. For the boundary
layer to exist at x = 0 it is sufficient to have f'(u,)a < c(0)h(u;) — C'/%. For
a = a satisfying f'(u,)a; = c(0)h(u,) — C,€'/* the above identity yields

flu(xy. a))) = f(u,) — eay + O(1)e
=f(“/) - e(f’(u,))ﬂ(c(O)h(u,) - Clel/d) + 0(1)e
= f(u,) + O(1)e.

Thus, as £ - 0, u(x,. a;) = U4, > u,, and so for small &, u(x,. o;) > u,. Since
u( x, «) is close to being inviscid for x > x, so long as u(x, a) is not close to the
sonic state zero. (i) of Lemma 3.4, it follows that, for small & u(x.a) stays
subsonic for u(x,, a) < u, and becomes sonic at x = x(a) < 1 for u(x,, a) >
uy. The latter holds for a = a,. Moreover, once u(x{(a), a) =0 for x(a) <1,
which is the case for a = a;, u(x, a) has a boundary layer at x = 1, Theorem 3.3,
and is strictly increasing for x, < x < 1. Moreover, from Lemma 3.5, if | — x(a)
> O(1)¢'/%. then u(x, a) becomes + oo before reaching x = 1. Since u(1, @) is a
strictly increasing function of a for a < a;, Lemma 4.3, and u(l.eq;) =
. u(l.a) = — 0 as a = — o0, we see that there exists an a; < a; with u(1. a,)
= u,. Moreover, since a, < a,, (X, ay) has a shock layer at x = 0. By Theorem
3.8, u(x, a,) also has a rarefaction layer x = 1. We have thus constructed the
designated solution of (1.1). The proof of the theorem is complete.

5. Asymptotic Stability and Instability

In this section, we study nonlinear stability and instability of stationary
solutions of

u, + flu) =eu, + c(x)h(u).
(5.1)
u(0.V=u,, uw(l.t) =u,, u(x,0)=uy(x). 0<xst.




60 S.-B. HSU AND T.-P. LIU

Let U(x) = U(x, ¢) be a stationary solution,

SUY, =¢eU, + c(x)h(U),
(5.2)
U(0) = u,. U(1) = u,.

Set wi(x.r) = wu(x.t) — U(x). From (5.1), (5.2) we have

W, f(w + Ul(w, + U)=ew + oy, - A (U) + c(x)h(nw + U).
(5.3) w{0.1) =0, w(l.t) =0.

The linearized equation is

w, + U Yw + UV w = ew, + c(x)A'(U)w.

54
(5.4) w(0.1) =0.  w(l.7) =0.

We shall use spectral analysis. Set w(x. r) = eMg(x) and obtain from (5.4)

(5.5) eg” — (f'(U)g)Y + c(x)h(U)g = Aq.
o q(0) = 0, q(1) = 0.

THrOREM 5.1, Suppose (1.6) holds. c(x)Yh'(u) < Q. then every steady stare
U(x) of (5.1 is asympiotically stable. When (1.7) holds. c(x)h'(u) > 0. then
steady states containing no interior luver are asymptotically stable: those containing
interior laver are asympiotically unstable.

Proof: A steady state {'(x) is stable if the largest eigenvalue A is negative.
From linear Sturm-Liouville theory (see [1]) the eigenfunction g(x) correspond-
ing to the largest eigenvalue A 1s of one sign. We may therefore assume that

(5.6) glx)>0. 0<x<1, ¢(0)=1. ¢'(1) <0.

When c{x)h'(u) < 0, we have, integrating (5.5). that

(5.7)  e(q’(1) — ¢'(0)) + f]c(x)h'(U(.x'))q(x) dx = A/lq(x) dx.

0
From (5.6) and (5.7) it is clear that A < 0 and so U(x) is stable.
When ¢(x)A'(u) > 0, we have two cases: (i) U(x) contains no interior layer,

(il) L(x) contains an interior laver. In case (i), for A = A(¢) is bounded
uniformly in ¢, then we may rewrite (5.5) as

eq" = (f{(U)g) + (c(x)h'(U) - N)q=0.

(5.8)
q(0) =0.  ¢'(0) =1,
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which is of the same form as (4.5). Thus it follows from Lemmas 3.3 and 3.4 that
q(1) > 0, which contradicts (5.5), g(1) = 0. [n case (i) if A = A(¢) becomes large
A > 1, then it follows from integrating (5.5) that

(GCOEG) = E(x) = £E() [ (R W) = Ng(r) d.
E(x) = expj— 1 Xf’(U)(-r)k dr:
Loedy !
whence (by ch'(U') — A < 0 as A > 1) we have
g(x) > E—(I_AT.{)"E(T)JT'

In particular, g(1) > 0. again a contradiction. Thus, in (i), A <0 and U(x) is
stable.

Finally we consider the case where ¢(x)h’(«) > 0 and U(x) contains an
interior laver. We want to prove by contradiction that A > 0. If not. then

A(X)R(U) =A>0

and so from adapting the proof of Lemma 4.5 to (5.8) we have g(1) < 0 which
contradicts (5.5). (1) = 0. Thus A > 0 and U(.x) is unstable. This proves the
theorem.
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